• A EV-derived miRNA-mediated cell-cell communication inference method

    Genome Biology, 2025

    Post thumbnail
    Post thumbnail
    MicroRNAs are released from cells in extracellular vesicles (EVs), representing an essential mode of cell-cell communication (CCC) via a regulatory effect on gene expression. Single-cell RNA-sequencing technologies have ushered in an era of elucidating CCC at single-cell resolution. Herein, we present miRTalk, a pioneering approach for inferring CCC mediated by EV-derived miRNA-target interactions (MiTIs). The benchmarking against simulated and real-world datasets demonstrates the superior performance of miRTalk, and the application to four disease scenarios reveals the in-depth MiTI-mediated CCC mechanisms. Collectively, miRTalk can infer EV-derived MiTI-mediated CCC with scRNA-seq data, providing new insights into the intercellular dynamics of biological processes. [Read More]
    Tags:
  • A spatial niche identification and characterization method

    Nature Communications, 2025

    Post thumbnail
    Post thumbnail
    Deciphering the features, structure, and functions of the cell niche in tissues remains a major challenge. Here, we present scNiche, a computational framework to identify and characterize cell niches from spatial omics data at single-cell resolution. We benchmark scNiche with both simulated and biological datasets, and demonstrate that scNiche can effectively and robustly identify cell niches while outperforming other existing methods. In spatial proteomics data from human triple-negative breast cancer, scNiche reveals the influence of the microenvironment on cellular phenotypes, and further dissects patient-specific niches with distinct cellular compositions or phenotypic characteristics. By analyzing mouse liver spatial transcriptomics data across normal and early-onset liver failure donors, scNiche uncovers disease-specific liver injury niches, and further delineates the niche remodeling from normal liver to liver failure. Overall, scNiche enables decoding the cellular microenvironment in tissues from single-cell spatial omics data. [Read More]
    Tags:
  • A review of single-cell omics and applications

    Science China Life Sciences, 2025

    Post thumbnail
    Post thumbnail
    Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis. [Read More]
    Tags:
  • A generative large language model for traditional Chinese medicine

    Pharmacological Research, 2024

    Post thumbnail
    Post thumbnail
    The utilization of ground-breaking large language models (LLMs) accompanied with dialogue system has been progressively prevalent in the medical domain. Nevertheless, the expertise of LLMs in Traditional Chinese Medicine (TCM) remains restricted despite several TCM LLMs proposed recently. Herein, we introduced TCMChat (https://xomics.com.cn/tcmchat), a generative LLM with pre-training (PT) and supervised fine-tuning (SFT) on large-scale curated TCM text knowledge and Chinese Question-Answering (QA) datasets. In detail, we first compiled a customized collection of six scenarios of Chinese medicine as the training set by text mining and manual verification, involving TCM knowledgebase, choice question, reading comprehension, entity extraction, medical case diagnosis, and herb or formula recommendation. Next, we subjected the model to PT and SFT, using the Baichuan2–7B-Chat as the foundation model. The benchmarking datasets and case studies further demonstrate the superior performance of TCMChat in comparison to existing models. Our code, data and model are publicly released on GitHub (https://github.com/ZJUFanLab/TCMChat) and HuggingFace (https://huggingface.co/ZJUFanLab), providing high-quality knowledgebase for the research of TCM modernization with a userfriendly dialogue web tool. [Read More]
    Tags:
  • A drug-responsive cell type inference method

    Cell Reports Medicine, 2024

    Post thumbnail
    Post thumbnail
    Cells respond divergently to drugs due to the heterogeneity among cell populations. Thus, it is crucial to identify drug-responsive cell populations in order to accurately elucidate the mechanism of drug action, which is still a great challenge. Here, we address this problem with scRank, which employs a target-perturbed gene regulatory network to rank drug-responsive cell populations via in silico drug perturbations using untreated single-cell transcriptomic data. We benchmark scRank on simulated and real datasets, which shows the superior performance of scRank over existing methods. When applied to medulloblastoma and major depressive disorder datasets, scRank identifies drug-responsive cell types that are consistent with the literature. Moreover, scRank accurately uncovers the macrophage subpopulation responsive to tanshinone IIA and its potential targets in myocardial infarction, with experimental validation. In conclusion, scRank enables the inference of drug-responsive cell types using untreated single-cell data, thus providing insights into the cellular-level impacts of therapeutic interventions. [Read More]
    Tags: